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I. Introduction

The diffraction of guided optical waves is of major importance in integrated optics

owing to the versatility and the wide use of integrated periodic structures. Periodic

interdigitated-electrode devices are widely used in integrated optics to induce phase grat-

ings. These phase gratings can diffract guided modes and thus can function as switches -6,

modulators,' deflectors,' mode converters, - 1 strain wave transducers," and perform

numerical operations for optical signal processing"s and optical computing" - 24 appli-

cations.

Various methods of analyzing the guided-wave diffraction have been used. The most

extensively used method of analysis is the coupled-mode approach first introduced by

Marcuse?" and Kogelnik 6 and then applied to waveguide gratings. 2 - " Other methods

used are the Floquet-Bloch approach,'-4 which computes the exact modes in the per-

turbed region, the Green's function method 4"4 first-order perturbation theory applied

to the total field, - 2 and the Rouard's method. 6s,& 4  In almost all published analyses

mentioned above, the interaction of the optical field with the grating is collinear which

means that the incident wavevector and the grating vector are codirectional or contradi-

rectional. Most of these analyses apply to distributed feedback lasers, distributed Bragg

reflector lasers, grating couplers, filters, multiplexers and demultiplexers, deflectors, mode

converters, etc. The analyses of Refs. 33, 35, 51, 53, and 54 can also treat oblique incidence

on pure reflection gratings whose grating vectors are perpendicular to the boundary be-

tween the waveguide and the grating. As a result, only one transmitted and one reflected

beam are possible. In Ref. 36 an approximate ray technique and an approximate coupled-

beam technique (taking advantage of the paraxial beams) are used to treat grating vectors

of general orientation with respect to the incident wavevector. However, only the Bragg

diffracted beam is considered in that analysis. Similarly in Refs. 47 and 48 the general

non-collinear case is approximately treated by retaining only the Bragg diffracted beam,

using Green's functions r first-order perturbation theory respectively. Kenan 0 has r.ia-
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lyzed approximately a more general case with many diffracted orders and modes for both

polarizations using a coupled-mode/coupled-wave approach. In all the above analyses the

anisotropy is completely ignored. Even though the coupled-mode theory has been extended

to anisotropic media,"" its application to non-collinear interactions is cumbersome due to

the difficulties in the computation of the coupling coefficients, and in the computation of

normal modes of anisotropic waveguides. As a result, very little work has been done on

anisotropic guided-wave diffraction, and that which has been done is only for the case of

collinear interaction." However, ansotropic materials like lithium niobate are widely used

in integrated optics and consequently the anisotropic properties should not be ignored.

In this paper, a new method of analyzing the diffraction of the pure guided modes

of anisotropic waveguides by interdigitated-electrode induced phase gratings is presented.

The analysis includes: (1) the anisotropic properties of the waveguide and of the grating,

(2) the grating vector not being parallel or antiparallel with the incident mode (non-

collinear diffraction problem), (3) an arbitrary number of diffracted orders retained in the

analysis, (4) the conditions for mode propagation, (5) the conditions for efficient mode

e'ffraction based on the various Bragg conditions of the plane wave components of the

mode, (6) computation of the mode diffraction efficiencies, and (7) generalization of (1)

through (6) for the treatment of the guided-wave diffraction by a cascaded stack of an-

isotropic gratings induced by interdigitated-electrodes. The analysis method described in

Ref. 57 is applied for the computation of the characteristics of the induced grating. The

diffraction analysis is an extension of the rigorous coupled-wave approach"' based on the

fact that a pure guided mode in an anisotropic waveguide can be decomposed into four

homogeneous plane wave components (two ordinary and/or two extraordinary) that are

not phase-matched at the grating boundary and consequently the diffraction problem can

be decomposed into four diffraction subproblems. The analysis is restricted to uniaxial

waveguides with one principal dielectric axis perpendicular to the electrode surface, and

to electrode periodicities chosen such that negligible intermodal coupling occurs (or equiv-
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alently for single-mode waveguides). The general approach of Ref. 59 has been adopted

and modified in order to compute the effective mode indices and the fields in the film

region of the waveguide for the two optic axis orientation cases. In addition, a new real

transcendental equation for the computation of the mode propagation constants has been

derived for the case in which the optic axis lies in the electrode plane. The conditions

for mode propagation are discussed. Those are classified into geometrical conditions and

amplitude and phase matching conditions. The diffracted mode parameters and efficien-

cies are also calculated. The analysis is generalized for slanted and cascaded electrode

configurations. It has been found that the most efficient configuration occurs when the

optic axis is perpendicular to the electrode surface. For the case of the optic axis lying

in the electrode plane, the optic axis orientations parallel or perpendicular to the grating

vector are treated. Finally, some example devices are analyzed. These include a Givens

rotation device, a herringbone grating multiplier, and a hybrid mode diffraction example.

In addition, a comparison with experimental data is included and an efficient configuration

is suggested.

The geometry of the problem is shown in Fig. la. In Fig. lb a top-view of the

same configuration is shown. In both figures (z, Y, z) is the coordinate axis system that

corresponds to the three-dimensional structure, while (z,, y,, z.) is the coordinate axis

system of the slab uniaxial anisotropic waveguide which is rotated by an angle 6 about the

z axis of the (z, V, z) coordinate system. The analysis is based on the given conditions:

(1) The optic axis is restricted to lie in the electrode plane or perpendicular to that plane.

(2) The intermodal coupling is negligible. This is automatically true if these are single-

mode waveguides. (3) The evanescent-field diffraction has the same characteristics as the

corresponding homogeneous plane wave diffraction. (4) The fringing effects at the grating

boundaries are neglected.

II. Guided-Waves in Uniaxial Anisotropic Slab Waveuides
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The modes that can propagate in uniaxial anisotropic dielectric slab waveguides are

discussed in this section. The optic axis orientations in the film and the substrate regions

are the same, and are restricted by the condition (1) given above. The cover is taken

to be isotropic (corresponds to the buffer layer that is used for integrated electro-optic

applications and it usually consists of silicon dioxide). The geometry of the waveguiding

system is also shown in Fig. la.

The tensor relative permittivities of the film and the substrate are ff, and 9. respec-

tively (expressed in the (z., y., z) coordinate axis system), while the scalar relative

permittivity of the cover is ec. The thickness of the waveguide (film thickness) is d and

the coordinate axis system (z.. p., z, ) is related to the (z, y, z) coordinate system

by a simple translation and rotation transformation. Plane wave solutions of the form

expI-jko(k., .z . + 'z.)] are used where i = c,f,sa correspond to the cover, film, and

substrate regions, respectively. The k,,j and fl' are the normalized wavevector compo-

nents (13' is usually known as the normalized propagation constant or effective index) and

kco = 27r/,Xo where ,o is the freespace wavelength. Using the analysis of Refs. 59 and 60 the

complex tangential electric and magnetic field components, E j,,, E,.,, H,,,, and H1.,

can be written in the form dE (1)
dx,

where E = IE ;, r)oH,.,,. E5.,, ioH,., is a 4 x I matrix (vector), . is a 4 x 4 matrix

given in Appendix A, i = c,f,a, and rjo = (1o/C0)1/2, is the characteristic impedance of

freespace, where co, and juO are the permittivity and the permeability of the freespace.

The solution of Eq. (1) is

ii = IT*j exp(-jk iz. )I1, exp(-jko P'z,), (2)

where Wj is a 4 x 4 matrix containing the eigenvectors of matrix A,, A. is a diagonal

4 x 4 matrix containing the eigenvalues of A., and 45i is a 4 x 1 matrix containing the

unknown constants of the first-order differential equations (Eq. (1)]. The elements e,,
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(p, q = z, y, z and i = c, f, a) correspond to the permittivity elements of each region and

are expressed in the (z,, , Y., zW,) coordinate axis system. The dispersion equation for

the normalized propagation constant P3' can be found using the boundary conditions of

the problem. These are described in Appendix A. It is straightforward to show (using

the expressions of Appendix A) that for nonzero solutions of the tangential fields, the

normalized propagation constant P' must satisfied the equation

P,,(#')p,,(P') - P34 (3) = 0, (3)

where p, (fl) is the ij-th element of P(#'), which is defined in Apppendix A. In addition,

for evanescent plane wave solutions in the cover and substrate regions, and homogeneous

plane wave solutions in the film region, the normalized propagation constant 63' should

satisfy the following inequalities

(612 > max{2, n2 nOcnEr~ (4
00, - } (4)

E=SS a C&SW!--£z

V... Lr~wf C2Suf(5)

where no c, no,, no, are the ordinary refractive indices of the cover, the film, and the

substrate respectively, and n~s , T&E, are the principal extraordinary indices of the film

and the substrate respectively. Inequality (4) guarantees that the plane waves in the cover

and the substrate regions are evanescent (both ordinary and extraordinary plane waves)

and inequality (5) guarantees that both ordinary and extraordinary plane waves in the

film are homogeneous. Inequalities (4) and (5) satisfy also the power flow condition since

no power should escape normally from the film-substrate and film-cover interfaces. The

power flow condition for the two optic axis orientation cases that are considered in this

chapter, are satisfied because the Poynting vector components normal to the interfaces

and the corresponding wavevector components always have the same sign. That is, S.,, >

0 = k., > 0 and S,,,j < 0 4 k,. <0, fori = ,f,s (S., is the component of the

Poynting vector normai to the interface). This condition is important since the power flow
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in the cover and substrate regions should be zero normal to the interfaces for guidance of

the light.

If inequalities (4) and (5) are satisfied then all plane wave components in the film

region are homogeneous. These homogeneous plane waves for which 6 satisfies Eq. (3)

constitute, along with the corresponding fields in the cover and the substrate, a subset of

the possible guided modes in the uniaxial anisotropic waveguide." ' - s' In this analysis,

only these kinds of guided modes are considered. This restriction limits the angle of

incidence 6 when the optic axis lies in the electrode plane. Consequently, (assuming a

negative birefringent material) the following inequality should hold

2 ~ ~~ n2,l,,3 ~6,< (6)6.. . .. (6) .. (b)'

where all the permittivity elements are expressed in the waveguide system (z., I,., y. 

and consequently depend on the angle of incidence b. In the case of positive birefringent

materials the inequality for the angle of incidence 6 is included in the following inequality

2lno)J e2 n 2 c (6)
. o< (6) - .(b), (7)

where in both cases it is assumed that the substrate ordinary and principal extraordinary

refractives indices are greater than no.. In the following subsections the two optiV axis

orientations under consideration are treated separately.

A. Optic Axis Perpendicular to the Electrode Surface

In this case the optic axis is oriented along the z axis (Fig. Ia). The modes

are decoupled since the ordinary and the extraordinary waves can be analyzed sepa-

rately. Consequently, TE and TM modes can be distinguished. Equation (3) becomes

p33 (M')p (') = 0. The condition Pss(/) = 0 corresponds to the guidance condi-

tion for the TE modes and is given by 2kok.,,od - 20f o - 21.o = 2mlr, where
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k., 0 = -n~ _ #1)1/2, 01,o =tan-' {Ik...I/k..f,,O,, =1 tafj{k...OJ/k..iO),

=-j(V - n2 )1 / 2 , and ka. 0  - 2 - n ,,)/ 2 . The integer m takes the values

0, 1, 2,..., and is characteristic of the TE, mode. The field expressions can be found

using Eq. (2). In this work only the expressions for the fields in the film region are going

to be presented since only these are needed in the remaining analysis. Those expressions

are given in Appendix A [Eqs. (A5)-(A8)].

Due to the guidance condition, Eq. (3), one parameter of the problem can be chosen

arbitrarily (depending on the initial conditions of the problem as for example given by

the input power). This parameter is chosen to be So- [Eq. (A4)]. Consequently, the

coefficients Fo+, and Fo- (complex in general) are not independent, and their ratio differs

for each TE mode. These coefficients can be written as Fot = Ao [exp(-jf,.o)]So-,

Fo- = Aojexp(+j ,.o)]So-, where Ao = (1/2)(1 + Ik8.. o1 2/k..o) 1'/ 2, and 4'.o has

been previously defined.

The condition p., (fi') = 0 corresponds to the guidance condition for the TM modes

and is given by 2kok,,,, d - 2#,1, - 2f.,s = 2m~r, where kf,,t = (no, /nz,)(n~, -

,2)1/2, of.8 = tn-{,2 /.k.. ), , = -. , k

and k,,,r = -j(no./nE.)(3P2 -n J)/2. The integer m takes the values 0, 1, 2,..., and

is characteristic of the TMm mode. The field expressions can be found using Eq. (2).

Similarly to the TE mode case the fields only in the film region are needed and are given

in Appendix A [Eqs.(A9)-(A12)).

For the TM mode case the free parameter is chosen to be So- [Eq. (A4)). Con-

sequently, the coefficients FE., and Fu- (complex in general) are not independent,

and their ratio differs for each TM mode. These coefficients can be written as,

Fz+ = Azexp(-j#,.s)]SE-, Fo- = Azexp(+j#,.z)]S,, where A, = (1/2)(1 +

nok..,, 0..ln k:. )/o and 0,. have been previously defined.
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B. Optic Axis Lying in the Plane of the Electrodes

In this subsection the optic axis lying in the zy plane is treated. The general theory

of Refs. 59 and 60 is again being used. The guidance condition for the hybrid modes in

this case is derived for the first time in the form of an analytical transcendental equation

similar to the TE and TM modes. This condition is given in general by Eq. (3) which for

this optic axis orientation becomes

Go HoFooFop cos(go + ho) sin(or - 4oo)+

GEHE FsFEo cos(gE + hE ) sin(0sEE -4'o)+

GoHsFooFIsin(,zo + ci + 4oo + OE , + go - hs)-

sin(io - ,e. + ,o o -- OE it + go + hs)]-

Co HEFosFzo[sinro + ct +4'os +Oso +go -hi)-

sin(ao -aB + OOE -4zo +g0 +h)]+

GEHoFoEFE o[Isin(ao +as +O#o +4o, +g -ho)-

sin(a, - o + Oo - Oo + gs + ho)I-

GEHoFooFEz[sin (ao +a, + oo +OsB +gE -ho)-

sin(a - CIo +4OE - oo+gE +ho)] =0 (8)

where Foo, Fo, Fo, F5z, Go, G, Ho, HE, ,0, Oft, go, ho, hE, 'oo 9 oE,

0o, and ;Es are defined in the Appendix B. All the above parameters are functions of

the normalized propagation constant, 8' [which is the unknown of Eq. (8)], the ordinary

and principal extraordinary refractive indices of the cover, the film and the substrate

regions, the thickness of the waveguide, 4, the orientation of the optic axis and the angle

of incidence. The fields in the film region can be found in a similar manner to that

previously presented and are given in Appendix B [Eqs. (Bl0)-(B15)]. Similarly to the

decoupled TE and TM cases, the coefficients FO +, Fo_- , Fs +, and Fs_ that appear

in the .Uld expressions are not independent. Again there is the pibsioklity of one free
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parameter, which as in the previous cases is chosen to be So-. Consequently the following

expressions can be written: Fo+ = Bojexp(-jOo)]So_, Fo- = Bo[exp(+jtOo)lSo_,

FE+ = BE exp(-jOtE)]So -, F,_ = Bz exp(+jt9E)]So -, where Bo, BE, to, and OE are

given in Appendix B.

III. Electro-optically Induced Phase Grating

When a voltage is applied to the interdigitated electrodes (usually a de voltage or a

quasi-static voltage), a phase grating is formed inside the waveguide under the electrodes.

This is due to the linear electro-optic effect (Pockels effect). The induced grating is periodic

along the z direction (Fig. la) and decays exponentially along the z direction since the

inducing electric field has the same properties. Consequently, using the expressions of

Ref. 57, the optical relative permittivity tensor elements in the waveguiding region (film)

are

E,(z, z)=e, o+ (Z)0.(z), (9)
on, odd

where u,V = zy, z and e,,c is given in Ref. 57, A,. is a constant factor that depends on the

electrode geometry, the material parameters, the applied voltage, and the spatial harmonic

number m. The constant A, is given in Ref. 57. In addition, grn (z) = exp[-wma, (z -

t - d,)/A,], where 2t is the electrode thickness, d, is the buffer layer (cover) thickness,

and a, is also defined in Ref. 57. Finally, 4,, (z) = sin(irmz/A.) where A, is the electrode

spacing. The above relative optical permittivity tensor elements do not vary along the ±y

direction and are expressed in the (z, y, z) coordinate axis system.

In order to account for the variation along the z direction, two approaches can be

used; (a) averaging of the electric field (electrostatic or quasi-static field) with respect to z

coordinate, without any optical field weighting, and (b) averaging of the electric field with

respect to the z coordinate using optical field weighting. The inclusion of an optical field

weighting takes into account the non-uniformity of the optical field in the film region of

10



the waveguide. Thebe averaging procedures define a new quantity,

S= g,(z)dz, (10)

which is independent of z. For the case of no optical field weighting,

L. rn(z) I E0,p(z) 'dz/] IE.,,,(z)I'dz, (11)

where zo = t + d,, z1 = t + d, + d, d is the film thickness, and IEo,,(z) 1 2 E..f 12 +

IE,.1 12 + ES. 11 2 , is the optical field magnitude [E.,f, u = z,y,z are given in Eq. (A5)

or Eqs. (A9) and (A10) when the optic axis is perpendicular to the electrode surface and

by Eqs. (blO)-(b12) when the optic axis is in the electrode surface]. Since the optical fields

are expressed in the waveguide coordinate system (zX, , z .), a suitable coordinate axis

system transformation is necessary to express all optical fields of the incident mode in the

(Z, y, z) coordinate axis system. Substituting Eqs. (10) or (11) into Eq. (9) the following z

independent approximate expressions for the relative optical permittivity tensor elements

are found;

(z .. o+1 A..grn ,(z), (12)
w, odd

where e
, (z) is the uv-th z independent element of the relative optical permittivity ten-

sor. Knowledge of the relative optical permittivity tensor is equivalent to knowledge of the

electro-optically induced phase grating under the interdigitated electrodes inside the wave-

guide. This relative optical permittivity tensor is necessary to carry out the diffraction

analysis.

IV. Guided Mode Decomposition

Using the expression of Eqs. (AS)-(A8), or Eqs. (Ag)-(A12), or Eqs. (B1O)-(B1S),

the total incident optical electric and magnetic fields are

,,-Igo.,ao. (z) + o- ao -(z) +Ei+as)+ (z) +is - as- (z)]b(z,yJ), (13)

H,,.--[f1oO o+(Z) + -o_- ao_(z) +R + zas+ (z) + As - as-(z)]b(z,y1), (14)(13

I1



where a.* (z) = exp(±jk k..,,qz), q = 0, E, b(z, V) = expf-jko3'(sin6 z - cos6 Y)],
and 6 is the angle of incidence (Fig. Ia). The , H,+4., and fl , terms (q =

0, E), correspond to the vector complex constants of the incident field components. The

components of the Eqs. (AS)-(A8), (A9)-(A12), and (B1O)-(BIS) have been transformed

into the (z, y, z) coordinate axis system. Using Eqs. (13) and (14) a guided mode incident

on the grating can be decomposed into four plane wave components, two ordinary 0+ and

0-, and two extraordinary E+, and E-. This situation is depicted in Fig. 2.

The four plane wave decomposition corresponds to the general hybrid mode case.

This applies when the optic axis is in the plane of the electrodes (xy plane). For the

decoupled cases, when the optic axis is perpendicular to the electrode surface (along z

axis) only two out of the four plane waves exist and the mode is either TE or TM. For

the TE decoupled mode case only the 0+ and 0- plane waves exist, and consequently,

Es + -- E,.- HE + =-HE- = 0. For the TM decoupled mode case only the E+ and the

E- plane waves exist and consequently Eo + =- . =/ Ho + = /Ho - = 0. In this analysis

it is required as mentioned before to have only homogeneous plane wave components in

the film region. As a result, inequality (5) should hold. As described in Refs. 59 and

60 it is possible for a guided mode to consist of both homogeneous and inhomogeneous

plane wave components in the film region. Thus, only a subset of the guided modes in

uniaxial anisotropic waveguides, the subset that contains the modes decomposable into

four homogeneous plane wave components in the film region, will be analyzed using the

approach described in this section.

V. Decomposition of the Diffraction Problem into Four Subproblems

A guided mode that is composed (in the film region) of four homogeneous plane waves

can be expressed by Eqs. (13) and (14), where k..Io, k.,,, and P' are real numbers.

These four plane wave components are not phase matched on the boundary of the grating

12



(zz plane in Fig. 1a) since in general k.,o # k..,r. The incident electric and magnetic

fields can be written as

,= exp(-jkok, ,(15)

f - f, exp(-jko k- r, (16)

where q = 0+, 0-, E+, E-, and s = 'sin6 X^- f'cos6 .k 1,i. The + sign

corresponds to the 0+ and E+ waves and the - sign corresponds to the 0- and E-

waves. Each component of Eqs. (15) and (16) satisfies the Maxwell's equations. Inside the

grating region the total field is expanded into space-harmonic components by extending

the expressions of Ref. 58. Those expressions are extended, however, for multiple incident

waves. The resulting fields in the grating region are

E = [S.,(y)! + S,, (y)j + S:,()i]b,(zy)a.(z), (17)

q
A= (L)V" (y- si(~ ~j yib x ,() (18)

where q 0 0+, 0-, E+, E-, bj(z,y) = exp{-jko[(#'sin6 - iK)z - iKy,1}, and

i designates the i-th diffracted order corresponding to the q-th incident homogeneous

plane wave, R = K.1 + Kj, is the grating vector, and a,(z)'s have been previously

defined. The f2 and R 2 fields should satisfy the Maxwell's equations in the grating region.

Substitution of Eqs. (17) and (18) into the Maxwell's equations leads to four independent

sets of equations, one for every incident plane wave component (two sets of equations for

the ordinary waves and two sets of equations for the extraordinary waves). The above

decomposition of the Maxwell's equations into four independent sets of equations, is a

result of the linear independence of the exponential terms a, (z).

4= E.. + :kexp (-kok~ .f + A"exp (-jko~ k*q F, (19)
q i

4= Zexp[-jkJ•j - (F+ &^)] + Pi" expf-jk'3 + ) (20)

13



where Ej., is given by Eq. (15), q = 0+, 0-, E+, E-, A:, ', k, 7' ', are the

complex diffracted amplitudes of the i-order that correspond to the q incident plane wave,

and k,, k' (p = 1,3) are given by expressions similar to the ones described in Ref. 58

for each incident plane wave q. Using exactly the same procedure described in Ref. 58

for each incident plane wave component q, four independent sets of boundary conditions

can straightforwardly be derived. Consequently, the three-dimensional anisotropic grating

diffraction analysis of Ref. 58 can be applied repeatedly for each incident homogeneous

plane wave component of the incident mode. In this analysis, the condition (3) described

in section I is being used since the boundary conditions for the film-cover and film-substrate

interfaces are not explicitly used inside the grating region. A similar condition was used

by Marcuse 2 in the coupled-mode analysis of isotropic corrugated waveguides.

Summarizing, the grating diffraction problem of an incident guided mode in the uni-

axial slab waveguide can be decomposed into four plane wave grating diffraction subprob-

lems. Each subproblem corresponds to a plane wave component of the incident mode. The

procedure described is shown in Fig. 3.

VI. Mode Propagation Conditions

A pure guided mode in a uniaxial dielectric slab waveguide can be decomposed into

four homogeneous plane wave components. Thus, in general, one guided mode consists of

both ordinary and extraordinary waves. Consequently, all types of diffraction described

in Ref. 58 are possible. The 00, OE, EO, and EE types diffraction are due to the

grating anisotropy and to the hybrid character of the incident mode. Since the forward-

and backward-diffracted wavevectors satisfy different dispersion equations (ordinary or

extraordinary), and the incident wavevectors are not phase matched along the z axis, the

resulting diffraction angles, projected onto the zy plane, are not equal. This happens since

every diffracted mode consists of four ordinary and four extraordinary plane waves not
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necessarily lying in the same vertical plane. This situation is depicted in Fig. Ib for two

forward-diffracted orders. The eight plane wave components result from the diffraction of

each incident plane wave (mode component) into an ordinary and an extraordinary plane

wave. Since the incident mode contains two ordinary and two extraordinary waves, eight

plane waves result from the PQ types of diffraction where P, Q = 0, E. Due to the

multiple diffraction types there are corresponding multiple Bragg conditions. 8

In order for the forward- and backward-diffracted modes to propagate the following

conditions must be satisfied: (1) At least four of the eight plane wave components of every

diffracted order should lie on the same vertical plane in order to constitute the four plane

wave components of the mode (two of the plane waves should be ordinary, 0+, 0-, and

two extraordinary, E+, E-). For the decoupled cases, when the optic axis is along the z

axis, only two plane waves are necessary to satisfy the above condition (only two ordinary,

0+, 0-, in the case of TE modes and only two extraordinary, E+, E-, in the case of

TM modes). (2) The propagation constant of a diffracted mode should be the same as the

propagation constant of the incident mode along the diffraction direction that corresponds

to that particular diffracted order (since in the uniaxial dielectric slab waveguides the

mode parameters depend on the direction of the propagation with respect to the optic axis

orientation). This condition is necessary to guarantee that the same type of mode will

propagate in the uniaxial slab waveguide after the diffraction by the induced phase grating

(since either the intermodal coupling is neglected or the waveguide supports only a single

mode). (3) For efficient diffraction the same Bragg conditions should be satisfied by all the

incident plane wave components of the mode. (4) Finally, the four plane wave components

of the mode should satisfy a certain amplitude and phase condition which is characteristic

of the incident mode. In the case of hybrid modes this condition will cause radiation losses

since in general the ordinary and the extraordinary components of the mode will possess

different diffraction characteristics.

Conditions (1), (2), and (3) restrict the direction of the optic axis with respect to
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the grating vector orientation and the angle of incidence. They can be characterized as

geometrical conditions since they involve geometrical requirements. Condition (4) can be

characterized as amplitude/phase condition since it involves the amplitudes and the phases

of the diffracted plane wave components. In the following subsection the above conditions

are discussed and analyzed for the two optic axis orientations that are of interest.

A. Geometrical Conditions

Al. Optic Axis Perpendicular to the Electrode Surface

The case of the optic axis perpendicular to the electrode surface corresponds to the

decoupled case where both TE and TM modes can be exist. Since the optic axis is along

the z axis there is a cylindrical symmetry in the zy plane. Various planar slices through

the wavevector surfaces are shown in Fig. 4. In this case only two waves (both ordinary

or both extraordinary) exist for one specific mode. This is the reason for the two different

propagation constants 16,', and I M that are shown in Figs. 4c and 4d for a TE and a

TM mode respectively. A degenerate case of both a TE and a TM mode having the same

propagation constant is also possible but this is not a general case of interest.

It is straightforward to show, using the wavevector dispersion relations, that the

normalized (with respect to k0 ) y components of the diffracted wavevectors for the i-th

diffracted order are

l,° ° = ±(0', - k,)J/2, (21)

0°  = [ - 2.]I2, (22)
we Rno' rS

for a TE incident mode, and

-B3=±(72 _k.,) 1I2, (23)
OR = [( no 16r' ) 2 -k2 (24)
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where the + sign corresponds to backward- and - sign to forward-diffracted orders and

k. =' sin 6 - iK. (in this case due to the unslanted grating K. = K and K. = 0).

The k" are the y components for the i-th diffracted order of a p polarization (p = 0, E)

incident and a q polarization (q = 0, E) diffracted. Equations (21), (22) and (23), (24)

hold for both 0+, 0- waves and E+, E- waves respectively. Consequently, condition

(1) is satisfied since both 0+, 0- or E+, E- waves for a TE or a TM incident mode

respectively lie in the same vertical plane. Using Eqs. (21)-(24) the diffracted angles of any

diffracted order can be found from tan 8," = lk.,/V. These angles are shown in Fig. 5

for the 0-order and the i-order forward-diffracted waves. In the case of a TE incident mode

(Fig. 5a) both plane wave components in the directions 6bo 0 and 6f0 are ordinary and

have the same propagation constant as the incident mode. In the directions characterized

by the angles 6bO' and 6?', there are two extraordinary waves produced by the OE type

diffraction. These two extraordinary waves can constitute a TM mode if (nf//nof)07.

is a propagation constant corresponding to a TM mode. A similar situation is shown in

Fig. 5b for a TM mode. The two ordinary waves along the 8, o direction (produced by

the EO type diffraction) can constitute a TE mode if (no, /n/)#,.M is a propagation

constant that corresponds to a TE mode.

Due to the cylindrical symmetry in the zy plane (shown in Fig. 4b), it is straight-

forward to prove that the eigenvectors and the eigenvalues of matrices . [Eq. (Al),

i = c, f, a] are independent of the angle of incidence 6. The i-th diffracted mode has the

same propagation constant, #,,, or 6,' for TE or TM mode respectively (Figs. 4c and

4d). Thus, Eqs. (3)-(5) are satisfied for any diffracted order. Consequently, condition (2)

is also satisfied.

The last of the geometrical conditions deals with the Bragg conditions. The Bragg

condition for TE or TM modes can be derived from the expressions of Ref. 58. Both

0+ and 0- waves satisfy the same Bragg condition. In addition, E+ and E- share the

same Bragg condition. For a TE-to-TE or a TM-to-TM mode diffraction, in the unslanted
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electrode configuration, the Bragg condition is A, = Aoi/2P', sin 6, where q = TE, TM,

and A,, is the freespace incident wavelength. The geometrical conditions discussed in this

section are extended in the next section for the case of the optic axis lying in the plane of

the electrodes.

A2. Optic Axis in the Plane of the Electrode Surface

The case of the optic axis lying in the electrode plane (zy plane) corresponds to

the hybrid mode case since neither TE nor TM modes can exist in this case. The plane

intersections of the wavevector surfaces corresponding to that orientation of the optic axis

are shown in Fig. 6.

Similarly to the previously case, it is straightforward to show that the normalized y,

components of the diffracted wavevectors are
k0 = ±(p2 - k2.)1/, (25)

l['i2,(-.. sin' 6, -r., sin26 , + ,, cors' 6,)-kn ,' n2 11/2, (
tryosz (26)CMI

,,,o =±In, _n _ k.,+

_ (C. sin2 ," - c., sin 26!" + e,, cos' b,)] 2. (27)n20
Of _2 161 ry rk o . =n o .n ', , r .' , , - k 2 , . .o , ' ( ' o , o f 1"1"1 2' ' (

where again the + sign corresponds to backward- and the - sign to forward-diffracted

wavevectors, and all the relative permittivities are expressed in the (z, y, z) coordinate

axis system. The diffracted angles for any diffracted order can be found from the equation

tan5 ' = -±k./k. These angles are shown in Fig. 7. In the EE and EO type of

diffractions the computation of the 6,3 8 and 6f 0 requires the solution of a trigonometric

equation.
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In the general case there are four distinct propagation directions for one diffracted

order due to the various types of diffraction. In Fig. 7a the different diffracted angles are

shown for the O-order and i-order forward-diffracted waves. The eight diffracted waves are

distributed as follows: two ordinary waves 0+, 0- along the direction of 6° 0 produced

by the 00 type diffraction, two extraordinary waves, E+, E- along the direction 6"

produced by the EE type of diffraction, two ordinary waves 0+, 0- along the direction

bf 0 produced by the EO type diffraction, and two extraordinary waves, E-, B- along

the direction 6°V' produced by the OE type of diffraction. However, a situation like the

one depicted in Fig. 7a does not satisfy geometrical condition (1) since for a mode all four

waves, 0+, 0-, E+, and E- do not lie in the same vertical plane. This problem does

not appear for the O-order forward-diffracted mode since as is shown in Fig. 7a all four

waves lie in the same vertical plane. There is, however, a solution to that problem if the

orientation of the optic axis is restricted to be along the z or the y coordinate axis. In this

case it can be shown that
k°  = ks' = - cos6, (29)

In addition to the restriction in the optic axis orientation the Bragg condition should also

be satisfied in order for Eq. (29) to hold. This situation is shown in Fig. 8 for the two optic

axis orientations. It is important to note the symmetry of these two special optic aris

orientations. The optic axis orientation is perpendicular or parallel to the grating vector.

The second geometrical condition is also needed. The normalized propagation constant

along the 0-order and the Bragg-order forward-diffraction directions is the same with the

normalized constant of the incident mode, P'. The condition expressed by Eq. (3) should

also hold to guarantee the guidance of the mode. This condition for the incident mode can

be written as

Pss(6, ')P44(6,') - pU,(6,ft)p3( 6,') = 0. (30)

it is straightforward, but tedious, to show that the Bragg diffracted order at an angle

-6, as it is shown in Fig. 8, will satisfy the condition (30) for -6 and #'. Consequently,
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the Bragg-order forward-diffracted waves at the direction 6 C 0 0 -6 satisfy the

second geometrical condition. The third geometrical condition is concerned with the Bragg

conditions. If the optic axis is along th- z or the y direction and the Bragg condition is

satisfied for the ordinary and the extraordinary waves, then all four plane wave components

of the incident mode will satisfy the same Bragg condition that was given for the decoupled

cases where 8 = ,8'. This can be seen from Fig. 8 and can be found analytically using the

expressions for the Bragg conditions.

The rest of the plane waves at the directions of the angles 6f s and 6! ° , cannot

constitute a mode since there are either only ordinary or only extraordinary components

in their respective directions, and the moses for these directions must be hybrid modes. In

addition, al, the diffracted orders except the 0-order and the Bragg-order forward-diffracted

modes cannot constitute a mode since they do not satisfy all the geometrical conditions.

The modes that are diffracted in these directions will radiate into the substrate and the

superstrate, and consequently, the guided mode will experience radiation losses during the

diffraction by the interdigitated-electrode induced phase grating.

B. Amplitude and Phase Matching Conditions

The diffracted plane wave components of the four incident homogeneous plane waves

(that constitute the incident mode) can be written in the form

A, * = (T.,,k I + T1,,, 4 + T,, i) expl-iko (k.,z + kp'y :F k., /,z)1, (31)

where p = 0, E, and i corresponds to the i-order forward- or backward-diffracted wave.

The above equation can be derived using the expressions of Ref. 58, where ordinary and

extraordinary components have been distinguished and the exp(-jkOk-.s) factors (a is

the grating thickness) have been included in the complex T,., , ± (w = z, It, z) wave

amplitude components. Equation (31) includes only the plane wave components that lie

in the vertical plane that make an angle k9o .. 6! B with the y axis, since as was justified
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previously, all four plane wave components 0+, 0-, E+, and E-, will lie in that plane

if the geometrical conditions are satisfied. The total field at the direction of k!P is , =

9o + + go- + + 9-. These equations are expressed in the (z, y, z) coordinate axis

system. Now it is convenient to express the field components in the waveguide coordinate

axis system (this system is shown in Figs. 5 and 7). It is worth mentioning that the

waveguide coordinate system is defined as a function of the diffracted angle. For the i-

order forward-diffracted wave the transformation between the waveguide coordinate system

(z,,, Y1,, z,,) and the coordinate axis system (X, Y, z) is a rotation by -PiP, and the

translation along the z axis has been suppressed because does it not affect the results.

Using that transformation the the diffracted fields are:

i. = (T..,p i., + T,.,,,g., + T.,,p., ) exp[-jko(+k..,,,., + #'z.,)j, (32)

where T..,;i (U = z, Y, z) are the complex amplitude components expressed in the

(zi, Yi, zi) coordinate axis system.

Bi. Optic Axis Perpendicular to the Electrode Surface

Using the properties of the ordinary and the extraordinary waves and the geometrical

conditions it is straightforward to show for TE modes that

w.0 = wiT,,,o* exp[-jko(±k..Ioz. + P'zji], (33)

and for the TM modes that

E.,= [T..isi i., + T..i*i.,expl-jk(±k.. r z.i + #'z.,j]. (34)

Consequently, the i-order diffracted waves of a TE incident mode will constitute a TE

mode and i-order diffracted waves of a TM incident mode will constitute a TM mode. It is

convenient to compare the diffracted electric fields with the incident electric fields, which

are given by Eq. (AS) for a TE mode and by Eqs. (Ag) and (A10) for a TM incident mode.
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Thus, the complex amplitude ratio coefficients are defined for the TE modes (ordinary

waves) as

Jio = , o +Iexp(-jio+ ) = T. (35)

f=fio- - exP(-JpOo- ) (36)

and for the TM modes (extraordinary waves)

T..E+ = IkT. Wix +(37)
fE+ =O )Fu+

LE- = ILE - Iexp(-jkopjz- T)- , ..tF -  - T,.i.s (38)

The fo+ , fo-, f , and f,5- coefficients express ratios between incident and diffracted

complex amplitude components. Using the above defined coefficients the i-order diffracted

total electric field can be written for the TE modes as

E,. if = V~o.+ Fo+ "o + (xv.,) + .fjo- Fo_- ao - (z.,j)1a,(z.,j), (39)

where ao + (z, ,) and ao - (z., ) were defined previously (as a function of z.,) and a. (z.,) =

exp(-jko#'z.,). Similar expressions to those of Eqs. (A6) and (A7) can be written for

the total magnetic field that corresponds to the i-order. Now for the TM modes the total

electric field components for the i-th order are

E..,, = P' [fi+Fs as (z.,)+ fiFs_ x_(z.,)] (z.,, (40)

= oe [-fkz+F~a(z.,)- fiF&-ax- (41)
no,

The complex coefficients fo+, fto-, fi.+ and fix- influence the phase and the amplitude

relationship of the plane wave components of the diffracted mode. The mode, however,

should satisfy the characteristic mode amplitude and phase relationship for its plane wave

components. Thus, only the in-phase waves with the correct amplitude ratios as given by

Eq. (39) for the TE modes and by Eqs. (40) and (41) for the TM modes will constitute
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the i-th diffracted mode. These phase and amplita 4e parts of the electric fields for the TE

modes are

Ey.if= o+ prsf,. Fo+ao,(z.,)-fio-Fo-ao-(x.)]a (z,), (42)

and for the TM modes are

E..,- ='f£,.+ [fis.Fs+as+(z.,) + fir-Fx-aE-(.i)la(z.,), (43)Lr,,,!
E.. I x~ = _.s ,+Tu [f', Fz + as + (zoi) - fir -Fs - as-(x. )1a,(z.,j), (4

_f kszt+ PL (44)

where p. = nin{, max{(IfE_ l/Ifi., I)c os(oE+ - pi,-), 0}), and q = 0, E (0 corre-

sponds to TE modes and E corresponds to TM modes). The coefficients Po and ps satisfy

the inequality 0 < Po, p- < 1, and they represent the radiation losses of the mode due to

the phase and amplitude mismatches. For this decoupled optic axis orientation, howev,..r,

due to the symmetry of the problem fao+ - a o- for the TE modes and fr + t f ,- for

the TM modes. Consequently, Po = 1 and pE - 1 which means that in this decoupled

case there is negligible radiation loss due to the amplitude and the phase mismatches.

B2. Optic Axis In the Plane of the Electrode Surface

In this case the modes are hybrid and the general equation (32) must be used. Again

coefficients Io., fjo-, f s+, and I,.s- can be defined as follows

Apt = If,,, Iexp(-j*,,., ) T.ip.fs

of8. k swf,-b, F

k2 --
p af i1

kew/V b

where p - 0, E. Using a similar procedure to the one above for the TE and TM modes,

the following electric field components, that satisfy the phase and amplitude conditions,
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can be written

Es w if 'kufi+P Fa(x. 04..g (. (2i) ]a2., (46)

Ey = l = E fiO+ Fja (xe,) + F. -.. ,-(x.)]a.-(z.a), (47)
4=0's

E,.i = fo+P[, (x,.) +F+a--( .,) (.,), (48)
q=08

where

p=min{1, max{ Ilio - I cos(,o - o+), 0}, max{ IL+, C (A E+ -Pi.0+) 0}'
140 1If-+

,Max{ LE- COS(Ps -Po+), 0)). (49)Y,0 IoS(b j,.I

Again the coefficient p is related to the radiation losses due to the phase and amplitude

mismatches of the plane waves and satisfies the inequality 0 < p _< 1. Similar expressions

to Eqs. (46)-(48) can be written for the magnetic fields. Figure 9 demonstrates the general

relation of the complex coefficients fio+, f o-, fE+, and fz.E-., in the complex plane.

If p = 0, which is a possible situation, then the diffracted mode will be coupled to

radiation modes only. In the following section some comments on the diffracted mode

efficiencies are discussed.

VII. Mode Diffraction Efficiencies

In or-ier to determine the efficiencies of the diffracted modes it is important to compute

the power per unit area, along the x, and /,., coordinates, that propagates in the z,.

direction. The power per unit area can be found at any point using the components of the

Poynting vector. Then, the power per unit area that is propagating in the z,, direction

can be found by a simple integration

p..,, = s..,,(x.,)dx, (50)
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where Po,, is the power per unit area in the z,,j direction and S,,,! is the z, component

of the Poynting vector as given in Appendix C. Both P.,,, and S,,, correspond to the

film region only. The power in the cover and the substrate can be computed similarly, but

since it was assumed that the evanescent fields in the cover and the substrate regions follow

the same diffraction characteristics as the corresponding plane waves, the expressions for

the film region power will be generalized for the total power propagating along the z,,

direction of the waveguide.

The power per unit area along the z,, direction can be found using Eq. (50). The

efficiency of a diffracted mode, DE,, can be defined as
P,,,t [2cos

DE, -- = p2lf,.+1 2 COS b (51)

where P,,, is the incident power per unit area and q = 0, E. If q = 0, Eq. (51) gives the

diffraction efficiency of a pure TE mode while if q - E it gives the diffraction efficiency of

a TM mode. For the hybrid mode case 6"° = 6" - 6 and q = 0.

VIU. Diffraction by Slanted Electrode Configurations

In this section the diffraction of guided waves in anisotropic dielectric slab waveguides

by slanted-interdigitated-electrode induced phase gratings will be discussed. Again the

mode propagation conditions described in section VI should hold. The amplitude/phase

conditions do not change in the case of slanted electrodes and the analysis presented in

subsection VI.B is still valid under the same given conditions of section 1. There are,

however, some differences in the geometrical conditions that will be identified for the two

optic axis orientations of interest.

A. Optic Axis Perpendicular to the Electrode Surface

Due to the cylindrical symmetry of the wavevector surfaces (along the z axis), all
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the geometrical conditions are still satisfied, and Eqs. (21)-(24) are valid. In this case,

however, K. = Ksino, where 0 is the slant angle of the induced grating. Again, two

distinct decoupled mode types can be identified, TE and TM modes. In Fig. 10 the zy

plane wavevector intersections are shown for a TE mode (Fig. 10a) and for a TM mode

(Fig. 10b). The cylindrical symmetry for both modes types does not affect the geometrical

conditions of the problem. The Bragg conditions are given by A, = Aoi/2f cos(o$ - 6),

where q = 0, E, for the two ordinary or the two extraordinary waves of the incident mode.

B. Optic Axis in the Plane of the Electrode Surface

This is the case of a hybrid incident mode where both ordinary and extraordinary

homogeneous plane waves are incident. Multiple Bragg conditions and diffraction direc-

tions are possible similar to those shown in Fig. 7. Equations (25)-(28) hold again if

K, = K sin 0. In order to satisfy the geometrical conditions, a restriction in the orienta-

tion of the optic axis is required. It can be easily shown that when the optic axis is parallel

or perpendicular to the grating vector orientation and the Bragg condition is satisfied then

k ° ° = 0.' = ±,'cos(20 - 6 - v), (52)

and the four homogeneous plane wave components lie in the same vertical plane at an

angle k0 = bis = 20 - 6 - ir and the same propagation constant P'. The sign in

Eq. (52) should be chosen such that k°',° = kg' s < 0 (propagation along the -y direction).

Consequently, when the optic axis is parallel or perpendicular to the grating vector and at

Bragg incidence the first geometrical condition is satisfied. The second condition is also

satisfied since Eq. (30) holds for 20 -6-r also, as can be shown using the same propagation

constant f'. Finally, the third geometrical condition is also satisfied and all the ordinary

and extraordinary incident plane waves share the same Bragg condition given as before

(for f = #'). Plane intersections of the wavevector surfaces are shown in Fig. 11 for the

optic axis parallel to the grating vector (Fig. 11a) and for the optic axis perpendicular to
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the grating vector (Fig. l1b).

IX. Multiple Slanted Electrode Configurations

It is relatively straightforward to generalize the above results for the case of multi-

ple cascaded gratings. The amplitude/phase conditions remain unaffected if the multiple

cascaded anisotropic grating diffraction analysis described in Ref. 58 is used. The geomet-

rical conditions in the case of the optic axis being perpendicular to the electrode surface

are again satisfied due to the cylindrical symmetry of the wavevector surfaces (along the

z axis). Consequently, any cascaded configuration of electrodes can be treated without

restrictions if the optic axis is perpendicular to the electrode surface. In addition, if the

optic axis lies in the electrode plane then the grating vector should be parallel or perpen-

dicular to the electrode surface and if Ot and 4 + are the slant angles of two consequetive

gratings then 10t - #e+ I -" 0, or r/2. An additional constraint is that the multiple type

Bragg conditions must hold in order to satisfy all the geometrical conditions. Summarizing,

the hybrid mode case is much more restrictive than decoupled cases due to the differing

diffraction characteristics of the ordinary and extraordinary waves.

X. Lithium Niobate Example

in this section two examples of guided wave anisotropic diffraction analyses are de-

scribed. Those examples are based on two applications of lithium niobate interdigitated

electrode devices. These applications are: a Givens rotation device and a herringbone mul-

tiplier. In both of these ,xamples the optic axis orientation is chosen to be perpendicular

to the electrode surface. This configuration, as will be justified later, is the most efficient

if the waveguide is designed to support only the TMo mode. This can be achieved if the

change in the extraordinary film index is greater than the change of the ordinary film index

comparing these indices with the corresponding substrate indices. In all the examples the
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film and substrate material is lithium niobate while the cover is silicon dioxide which serves

as a buffer layer between the electrodes and the waveguide. The superstrate is air. The

operating freespace wavelength is taken to be 1.0j;m and the refractive indices (at that

wavelength) are n, = 1.51, no = 2.2512, hgy = 2.1894, no. = 2.2362, and ns, = 2.1594.

These ind!ces correspcnd to a titanium diffusion formed waveguide. The film thickness is

taken to be 1.Opm. Solving the waveguiding problem using Eq. (3) for TE modes or TM

modes (due to the decoupled orientation of the optic axis that equation may be greatly

simlified as was described in section ILA). For the chosen film thickness only TE0 and

TM0 modes can propagate with normalized propagation constants of 6., = 2.2367 and

7M = 2.1671. The z normalized components of the ordinary or extraordinary wavevec-

tors of the plane wave mode components can be found using Eq. (B6) or (B7) respectively

of Appendix B. The induced relative permittivity tensor under the electrodes (inside the

waveguide) depends on the chosen periodicity of the grating (or equivalently the electrode

spacing), the thickness of the buffer layer, the ratio of the electrode width to electrode

spacing (which in all the examples is w/A, = 0.50), and the ratio of the electrode thick-

ness to the electrode spacing. In addition, the electrostatic relative permittivities are

r, - 3.90 (SiO 2 ), and c.., = =,, = 84.142 and a.,, = 28.122 (lithium niobate). The

relative permittivity of the air is assumed to be unity. The small difference in the rela-

tive permittivities of the film and the substrate regions is negligible in the analysis of the

electrostatic problem.

A. Givens Rotation Device Example

The Givens rotation operation occupies a central role in linear algebraic signal pro-

cessing. An integrated-optical coherent implementation of an elementary rotation matrix

device, can be constructed based on a thick grating induced by interdigitated-electrodes.

Consequently, the same device that has been described in the previous subsection can be

used as a Givens rotation device" to implement the Givens orthogonalization. However,
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in this case the amplitude of the transmitted and diffracted fields is needed for correct op-

eration. The transmitted field must vary as sin(K. V) and the diffracted field as cos(K. V)

where K. is a constant and V is the voltage applied to the interdigitated electrodes.

The Givens rotation device is shown schematically in Fig. 12. The periodicity of the

induced grating (and consequently the electrode spacing) is such that it satisfies the first

Bragg condition for a TMo incident mode. Using the normalized propagation constant

7 = 2.1671 for an angle of incidence 6 = 50, a Bragg periodicity of Ar = Ao -

2.6473tim can be computed. For a film thickness of 1.0gm a TED mode can also propagate.

However, the coupling between TMo - TEo is negligible since the deviation from the Bragg

periodicity can easily be computed from the equation,

,, ) (53)
0

and is found to be 0.251im which is very large for "thick" grating diffraction. The buffer

layer thickness is d, = 0.25pm, and the electrode thickness is 2t = 0.10/Am. Using the

analysis described in Ref. 57 the relative permittivity tensor can be calculated and is

C11 = -0.39 x 10' V//Am, 633 = -1.14 x 10' V/M&m, C12 = -0.15 X 10-' V/M,

r13 = 0.69 x 10-' V/ ,m, and the g;' - 0.24 computed with averaging along the z

direction of the electric field without any optical weighting.

The 0-order and the +1-order forward-diffracted electric fields are shown in Fig. 13

as a function of the applied voltage normalized with respect to the incident electric field.

The dotted lines correspond to rigorous calculations using the analysis described in this

chapter, while the continuous lines correspond to a cosine, cos(K.V), (Fig. 13a) or a sine,

sin(K.V), (Fig. 13b) best fit on the rigorously computed results. The best fit value for

K, was 0.123 rad/volt. The agreement between the rigorous curves (dotted lines) and the

cosine and sine approximations (continuous curves) is excellent. This good agreement is

necessary for the correct device operation.
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B. Herringbone Multiplier Example

Similarly to the previously described case, a Z-cut (optic axis along the z direction)

slab is used for the design of the herringbone multiplier. It is taken that the TM0 mode is

propagating. The angle of incidence is 6 = -5 ° (Fig. la). The TM0 mode consists of two

extraordinary polarized plane waves with parameters that can be computed by Eq. (B7),

where again 6' = Pv = 2.1671. The slant angle of the first grating, 0 , can be computed

using Ref. 58 for i- 1 to be 01 = 87.5 ° . Another solution of the same equation

is 0, = -2.5 ° which corresponds to a backward diffracting grating and consequently is

not practical for the design of the multiplier. The slant angle of the second grating is

2 = 92.50 (again using the equations of Ref. 58). The common periodicity A of both

gratings can be calculated to be 5.3 rm. The thicknesses of both gratings were chosen

to be equal, a, = s2 = 1000Mum. The top-view of the multiplier and the corresponding

wavevector diagram are shown in Figs. 14a and 14b respectively. For the electrostatic

analysis the ratio of the electrode gap to the electrode spacing is I/A. = 0.5 (where A.

is the electrode spacing). The buffer layer is assumed to be 0.15/m and the electrode

thickness 0.25Mm. Using the electrostatic analysis of Ref. 57 the fundamental component

of the electric potential Q, is found to be 0.3146 volts. The induced permittivities are

Gi.k = 1l1k coS(R,. . + 22 1sin(kR. ](V /A),

c ,, = 1-cil, cos(ff,. *) + re2, sin(R. .](V,/Ak),

.ah = C31, [s in (R e . l(Vh /A.), (4)

• .,,= E,2klcos(Re .r]V,/A.,

a &.k = L,,,klcos(Ke- 1(Vk/A.k),

,, = 62 3 lcos(Ka , ](VauIA.k),
where k = 1, 2, till = 0.32 x 10 - 5 V/M, C112 = -C,1,, C22J = C222 = -0.19 X

10-' V/pAm, 6,3 = C332 = -0.54 x 10-s V/pAm, 6121 = C1 2 2 = -0.72 x 10-' V/pim,

131 = E32 = 0.32x 10-' V/pAm, 2 -C232 = -0.14 x 10-' V/pum, g,' = 0.43, and V1,

V2 are the applied voltages. In order to operate the multiplier it is a requirement to have

3o



an output which is proportional to the product of the two applied voltages V, V2 . Thus,

the desired diffraction efficiency is of the form DE t- K. V, V2 .

The performance of the multiplier has been evaluated with a numerical example.

In order to achieve better performance a set of bias voltages have been added. The bias

voltages Vb, Vb were chosen 10.8 volts in order to operate as close as possible to the linear

response of the diffraction curves of each grating. The input voltages V, V2 were varied

around the bias voltages in the range from 8.8 volts to 12.8 volts. The -2-order forward-

diffracted mode efficiency is shown in Fig. 15 as a function of the voltage V = V, = V2 ,

along with the predicted efficiency from the equation DE,, = K. V1 V2 (where K. has been

computed around the bias point to be (0.25/10.82) I/volt2 ). The error as a function of the

applied input voltage is also shown in Fig. 15. The percentage error has been calculated

using the formula PE = (DE, - DE) x 100/DE where DE is the rigorously computed

efficiency and DE, is the predicted efficiency using the equation DE, = K, V, V2 . It is

observed that the error is in the order of ±8% for the chosen range of variation of the

input voltages around the bias points. One potential problem of the proposed multiplier

is the limited dynamic range if larger voltages are necessary. Consequently, compensating

electronics may be necessary.

XI. Hybrid Mode Example

In this hybrid mode case the lithium niobate crystal is assumed to be Y-cut and X

propagating. Consequently, the optic axis is along the z axis of the coordinate axis system

that is used in this analysis. The refractive indices of the cover, film and substrate are n, =

1.51, nol = 2.254, n"S, = 2.174, no. = 2.234, and ns. = 2.154, at an operating freespace

wavelength of A0 = 1.06Mm. The thickness of the film region is again assumed to be 1.Opm.

According to Eq. (6), in order to have four homogeneous plane wave components the angle

of incidence 6 should be greater than a critical angle which for the given parameters of
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the waveguide is 60.7. In this analysis the angle of incidence is chosen to be 6 = 620 and

therefore is greater than the critical angle. Using the above defined parameters and the

analysis of Refs. 59 and 60 [or Eq. (8)], two acceptable values of the normalized propagation

constant 0' = 2.217, and 9' = 2,235 are calculated. From these values only 6' = 2.235

corresponds to four homogeneous plane wave mode components. Using Eqs. (B6) and (B7)

of Appendix B all the plane wave parameters can be computed. From the Bragg condition

A = 0.27pm. This periodicity is very small for practical applications due to the large

angle of incidence but the results of this example analysis are only for demonstration of

the hybrid mode effects. Using a buffer layer of 0.05pm and I/A, = 0.5, a fundamental

electric potential harmonic of Q, = 0.054 volts was computed. The induced permittivity

tensor is
c,= E izcos(Kz)](V/A.),

V,, =- [-62 cos(Kz) - £ss sin(Kz)](V/A.),

Ir, = IC22cos(Kx) - , sin(Kx))(V/A.), (55)

Clr E"# -= 0,

es, = 13lsin(Kx)](V/A.),

where r, = 0.61 x 10- V/p4m, £22 = 0.22 x 10-4 V/p0m, C33 = 0.85 x 10-' V/lpm,

623 = -0.38 x 10-4 V/pum, and gi' - 0.5. The grating thickness was assumed to be

2000/Im, and the applied voltage was varied between 0 and 50 volts. The diffraction

efficiencies of the 0+, 0-, E+, and E- waves are shown in Fig. 16 and their corresponding

phases in Fig. 17 (for the 0-order and the Bragg-order) as a function of the applied on the

electrodes voltage. The resulting mode efficiencies are shown in Fig. 18 for the O-order

(dashed line) and the Bragg-order (continuous line). It is shown that the diffracted mode

efficiencies in this case appear to have significant radiation losses due to the phase and

amplitude mismatch between the ordinary and the extraordinary waves.
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XII. Comparison with Experimental Results

In this section the results of the analysis presented are compared with the experimental

results of Ref. 18. The geometrical configuration is that of Fig. 1. The electrodes are

unslanted with respect to the (z, y, z) coordinate system and the optic axis orientation

is along the x axis. Before starting the analysis of that configuration it is worthwhile

to comment on this optic axis orientation. According to the results of Refs. 59 and 60

for this optic axis orientation, the propagating modes at normal incidence to the grating,

are characterized as critically stable. Slight divergence in the angle of incidence from

propagation along the -y axis changes the mode from pure TE0 to a leaky mode. In this

leaky mode region, due to the negative crystal birefringence, the ordinary component of

the hybrid mode leaks into the substrate.

For the diffraction process it is necessary to use angles of incidence away from the

normal. For this propagation direction the modes are leaky guided modes and power will

be lost as it travels down the waveguide even if the grating is not present. Additional losses

are also present due to the diffraction of the hybrid mode as described previously. In order

to study the above experimental configuration the hybrid character of the incident mode

will be suppressed due to the very small angle of incidence (6 = 0.62°). Consequently, the

leaky character of the mode will also be neglected.

For the electrostatic analysis the ratio I/A. is 0.5, the electrode thickness is 0.5Mm,

and the buffer layer (SiO 2 ) thickness is 0.15jAm. The grating periodicity A is 13.33 um.

The low-frequency relative permittivities of all the materials are the same as in section 5.10.

The fundamental harmonic of the electric potential is Q, = 0.54 volts. Using that value of

Q, a fundamental electric field harmonic of E, = 0.422(Vc /t) is computed, where VE is

the voltage difference between two consequetive electrodes. If Engan's analysis is used'"'

then the corresponding fundamental harmonic is El = 0.847(V11/1). As a result, neglecting

the electrode thickness and the buffer layer introduces an error in the electrostatic field
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computation of about 50%. Similarly, the error in the capacitance computation is of the

same order. The operating freespace wavelength is 0.633pm and the refractive indices of the

film are taken to be no, = 2.2885 and nEf = 2.2014. At normal incidence on the grating

the incident mode would be a TE0 mode. For the given optic axis orientation the TE0 mode

corresponds to two extraordinary incident waves. The normalized propagation constant is

found using the Bragg condition given in Ref. 18 and is 2.194. The parameters of the two

extraordinary waves can be computed from Eq. (11.7). The induced relative permittivity

tensor is given by Eqs. (55) where el I = 0.69 x I0- 1 V/rM, L22 = 0.25 x 10- 3 V/Am, C33 =

0.97 x 10 - 4 V/M, eL = -0.43 x 10 - 3 V/m, and g'q = 0.51. The Bragg diffracted mode

efficiency along with the experimental results are shown in Fig. 19. An important difference

between the experimental and the theoretical results is that experimental efficiencies are

normalized with respect to the output power while the theoretical results are normalized

with respect to the input power. This is the reason that the losses do not appear in the

experimental data even if it is known that the incident mode is slightly leaky.

XIf. Discussion and Summary

It has been shown that all optic axis orientations supporting only hybrid modes in-

troduce radiation losses after the diffraction process due to the geometrical and ampli-

tude/phase mismatches of the ordinary and extraordinary waves. In some cases (leaky

guided modes) this is true for the mode even without the diffraction by the interdigitated-

electrode induced grating.119 s0 In this paper the most efficient optic axis orientation is

identified to be the orientation corresponding to the z axis direction (perpendicular to the

electrode surface). This decoupled optic axis orientation guarantees negligible radiation

losses due to the different mismatch types. For this preferred orientation of the optic axis

the propagation of only the TMo mode can be achieved (for negative birefringent lithium

niobate) since its cutoff thickness is smaller than that for TE0 mode. Consequently, the

large electrooptic coefficient can also be utilized. An additional advantage is the increase
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of the z component of the electrostatic field (that affects the index difference due to the

largest electrooptic coefficient in lithium niobate). As a result the orientation of the optic

axis perpendicular to the electrode surface should be preferable.

In the case of the hybrid modes the resulting diffraction efficiencies are affected by radi-

ation losses. This is due to the various mismatches of the 0+, 0-, E+, and E- waves and

especially the mismatch between the ordinary and the extraordinary components. How-

ever, the analysis neglects the coupling between the different guided or radiation modes.

This coupling, in some cases, can act cooperatively with the diffraction process resulting

in decreased radiation losses. Consequently, the above hybrid mode results can be consid-

ered as a guideline in the design of hybrid mode interdigitated-electrode devices. However,

propagation along directions where leaky modes are permittable should be avoided.

In summary, an analysis for treating the diffraction of guided-waves in uniaxial an-

isotropic slab waveguides has been developed for the first time. The analysis is based on

the three-dimensional anisotropic rigorous coupled-wave diffraction analysis and on the

decomposition of a guided mode in a uniaxial anisotropic slab waveguide into four ho-

mogeneous plane wave components. The latter decomposition restricts the types of the

guided modes that can be treated to pure guided modes which are decomposable into four

homogeneous plane wave components. However, the analysis for the first time takes into

account the nisotropic properties of all media, an arbitrary number of diffracted orders,

and the noncollinear character of the diffraction (where the incident mode and the grating

vectors are not collinear). Example analyses have been presented. These include a Givens

rotation device, a herringbone multiplier, and a hybrid mode device. Comparison with

experimental data has also been included. The agreement with the experiment simulta-

neously verifies both the electrostatic analysis and the diffraction analysis. Finally, an

efficient configuration for crystals like lithium niobate has been identified along with the

propagating mode direction, for electrooptic applications involving grating diffraction and

propagating guided-modes in uniaxial anisotropic waveguides.
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APPENDIX A:

BOUNDARY CONDITIONS AND FIELD EXPRESSIONS

The matrixA, of Eq. (1) is

0 1 0 0
Sp' 0 ,.. .

- sas., 6820i Lr,,

e4= - (Al)"" p' 0 7"" 8 '
L£,,,i £##wi sw

(3S5i 0 !..- -4BWU16
e'£sw ssw cessw G.

where i -c, f, a.

The boundary conditions of the anisotropic slab waveguide of Fig. 2 are:

(a) Film-substrate interface (z., = 0)

W 1 =1V 5,(A2)

where the unknown constant matrices are of the form (5, = [Fo +, Fs,, Fo-, Fr IT and

45. = [0, 0, So., s,_ ]T.

(b) Film-cover interface (z. = d)

1;,,f Ip(-.,'ko ., d) I (5--=w,,, dc, (MS)

where C, = 1C0 +, Cs+, 0, 0]" and the matrix C, was shifted by exp(+jkoAd) in Eq. (2)

for simplicity in the resulting boundary conditions. Combining Eqs. (A2) and (A3) the

following condition must be satisfied

C { , lexp d()IWkoj, '1#',.) o (M)

where for simplification in the notation j exp(-jko 1, d)]WJl; 1Wr =fli').
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Using Eq. (2) and the other Maxwell's equations it can be shown that the field ex-

pressions in the film region for a TE mode are

E =.! = [Fo. a o (z.,) + Fo- ao_ (z.)] exp(-jkofl'z.), (AS)

Thia., = k 8.. oI Fo. ao+ (z,.) - Fo- ao- (z.)] exp(-jko0'z.), (6)

,0H.., = -'IFo 4 ao (X.) + Fo_ ao- (z.)] exp(-jko'4.), (A7)

E..l = E =. = 0, (AS)

where a, (z.) = exp(-jkok..,,oz.), and ao- (z.) = exp(+jkok..,oz,). Similarly to

the TE mode case the fields in the film region for a TM mode are

E.., = ---' [Fs+as+(z.)+Fs-as_(z.)]exp(-jko,64). (Ag)

Ea.,= -ka.," {fz a-+(x.)-Fs-,aE_(z.)]exp(-jko,6'z.). (A10)

,oH,.. = jF,. as+ (z.)+ Fz- az-_(z.)]exp(-jkof'z.), (All)

Eyw = 7o Hai = oHa,= 0, (A12)

where as . (x) = exp(-jkok..,z .), and as - (w) = exp(+jkok.. ,sx.

APPENDIX B:

PARAMETERS OF THE GUIDANCE CONDITION WHEN OPTIC AXIS

LIES IN THE ELECTRODE PLANE

The parameters appearing in Eq. (8) are:

Fog = {(. 2 A03- [(as 2 A ) Ik€ a 1]2)1/2 (Bl)

/ A., a., --- k.

+zf AS a. 2 + [~ + Aok.., 6. 2 k).,, 1/ (B2)

where q = 0, E and

A _ 1 k,- 0  , (B3)

2 k&2, 0 - k&wfi
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k2 b q

1(k .. o -b,)(k..,, -b,)
A 2 k -k2  

, (B5)

and a (1- '2 /...,)C,..,, b, = (1 - 6'2/,,,.,)caa.,, Cp -- ,,., and p = ef,s

(corresponds to cover, film and substrate regions respectively). The normalized wavevector

components k,.,, kw.,o, ks,.,l kwfo, and k,.,f can be found using the wavevector

surface equations. The ordinary components can be found from the equation

p,612 2f= . (B6)WP.o + - no, = , p = C,. f,a. (

Because of inequalities (4) and (5) the components in the cover and the substrate are pure

imaginary and their sign should be chosen in order to have exponentially decaying fields

in these regions. The extraordinary components that appear in the film and the substrate

regions are given by the extraordinary wavevector surface equation

ROP(&k., + 1) + (n2, - n - = 0, = (B7)

where c,. is the direction cosine of the optic axis along the waveguide z, coordinate

axis. The substrate component, because of inequality (4), is pure imaginary and special

attention should be taken in the choice of its sign in order to have exponentially decaying

fields in the substrate.

The parameters 0,, where p, q O, E are

0 = tan {-A- A[Ao, /(k..,. - b.)](./e,) Ik,.., (B)
0 - Ao lJ~o/(k.., -b.))(./&,.) k ,o

0,. = tan' {_ ,, + Ao,/(k..., - b.)](c./c,) I1ka, 0 (Bg)

A, + [A05 /(k.2 3*, - b.)Wa./a,) k.,(,

where q = 0, E, and the rest of the parameters have been previously defined. The param-

eters Go 9 Gs, H 0 , Hs, og,, g, ho, hs, o, and a are, G, = (1/2)11+k.,,/lk..121112

= tan-'(kf,./lk.,), H, = (c)k,,, + - b4l, 1, =
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ta-'(afn"og/ICk..flk..,I), and a, = kk..,d, where q = 0, E and d is the film

thickness.

The expressions for the fields in the film region are

.81k8 W 1 [F.+ .+ (Z. , - .. a,..- (z., )exp (-jko jTz.) (BlO)

SE..= 2 bF,+ )+a,.(z.)F_a,_(z.)exp(-jiOk).), (BI0)

quo., s fq _

I ,,= 1 6[, a,4  (.) r-(n a,.. (zo. ) x(.jlf'z,(B2)

joH.,. -X E [F+a,+(z.) +F,_.a,-(X.,)]exp(-jko$'z.), (B13)
q=0.E

-- H w [F a,+ (z,) - F -a,_ (z.) exp(-jkofi'z.), (B14)

..,= , k..,2-F,4 + ,+ (z.)-F,_a,_(z.)]exp(-jko0z.), (BiS)

The expressions for the Bo, BE, 0o and t, that appear in the expressions for Fo ., Fo-,

Fs +, and Fe - in the case of the optic axis lying in the plane of the electrodes are

Bo [(Foo coso o - Foz Q cos o, )2 +

(F0 0 sinooo _ Fo SQSin o) 2 ]1/ 2 , (B16)

BE = j(FEo coOo - FsQcosORE,) +

(Fito sin OR o - F s EQ sin OR S )2]1/2% (B17)

{ = Foo sinoo - FoQsino , (B18)
to =ta- Po cos eOo -FoQ Qcos oa(B

OR = tan- FEo sin Oo - F- ,Qsin#,, (Big)

and,

Q Hooo sin(qo - ho + 0o 0 ) + Hs Fso sin(as - h5 + @O) (B20)
H Fo , sin(ao - ho + 0os) + HsFs, sin(a, - h, + 4,,)
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APPENDIX C:

POYNTING VECTOR COMPONENTS

1. Optic Axis Perpendicular to the Electrode Surface

The z. i component of the Poynting vector for this optic axis orientation is

S..if = +'A 11+cos(2kok.. z, +20.o)lfo+ 12p lSo. 12 , (CI)
,7o

for the TE modes, and

s..,, = I'A [z+cos(2kok..tz==. +20,,z)]lfj piv*_12, (C2)

for the TM modes [where 7o = (MoI0o)1/2].

2. Optic Axis in the Plane of the Electrode Surface

For this case the z.i component of the Poynting vector is

s..,, = t(2( + C20" ) + B. I + q.. )+

0~1 - ) cos(2ko k..o zw. + 2to)+

B82(1- -'z )cos(2kok.,,f, z. +2t9)+
Et...!

4Bo (cos(kok.a, oz., +to)cos(kok 8.. zsw . + O,)+

Co C, sin(kok.., o z., + o) sin(kok 8.,, z., + 6s)]}

p IJo. 12 ISo_ 12, (C)

where C, = k.,,f/(k..j,-b,forq=, E.
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FIGURE CAPTIONS

1. (a) Three-dimensional geometry of the diffraction of guided-waves in uniaxial an-

isotropic slab waveguides by interdigitated-electrode induced phase gratings. (b) A

top-view of the same geometry that shows the various diffraction directions of the or-

dinary and extraordinary components of an incident mode, for each diffracted order.

In this figure only the 0- and +1-orders are shown.

2. The decomposition of a guided mode into four plane wave components. 0+ and

0- are the two ordinary plane wave components while E+ and E- are the two

extraordinary plane wave components.

3. Decomposition of the guided mode diffraction problem into four grating diffraction

subproblems.

4. Planar slices through wavevector surfaces for the case of the optic axis being per-

pendicular to the electrode surface. (a) zz., plane intersection at y. = 0, (b) xy

plane intersection at z = 0, (c) zy plane intersection at z, = ±k.,fo, correspond-

ing to the ordinary waves 0+ and 0- (TE modes), and (d) zy plane intersection

at z, = ±k.. , corresponding to the two extraordinary waves E+ and E- (TM

modes).

5. Top-view (zy plane) of the diffraction geometry in the case of the optic axis perpendic-

ular to the electrode surface. The 0-order and the i-order forward-diffracted directions

are shown. (a) TE incident mode (0+, 0- waves), and (b) TM incident mode (E+,

E- waves). The directions shown are valid for a negative birefringent material. In

the case of positive birefringent material the relative ordering of the diffraction angles

is reversed.

6. Planar slices through wavevector surfaces for the case of the optic axis being in the



electrode plane. (a) zz. plane intersection at y. = 0, (b) zy plane intersection at

z = 0, (c) zy plane intersection at z, - ±k,,Io, corresponding to the two ordinary

plane wave components, and (d) zy plane intersection at z, = ±k., f E, corresponding

to the two extraordinary plane wave components.

7. Top-view (zy plane) of the diffracted geometry in the case of the optic axis lying in the

electrode plane. Only the 0-order and the i-order forward-diffracted waves are shown

for (a) general incidence and optic axis orientation, and (b) for Bragg incidence and

optic axis orientation restricted along the z or the y axis.

8. xy plane intersections of the wavevector surfaces at x, = ±kf 10, that correspond

to the ordinary waves, and at z, = ±k,,P, that corresponds to the extraordinary

waves. The Bragg condition is also satisfied. (a) Optic axis along the z axis, and (b)

optic axis along the y axis.

9. The general relation of the complex coefficients fo+, fo-, fiz+, and fi,.-, in the

complex plane. Coefficients ratios with respect to fjo+ are shown.

10. zy plane intersections of the wavevector surfaces for the case of the optic axis being

perpendicular to the electrode surface, and for a slanted electrode configuration. (a)

A TE incident mode (ordinary waves), and (b) a TM incident mode (extraordinary

waves).

11. zy plane intersections of the wavevector surfaces at z = ±k,,o (ordinary waves)

and z, = Ek f E (extraordinary waves) for Bragg incidence and (a) optic axis ori-

entation parallel to the grating vector, and (b) optic axis orientation perpendicular to

the grating vector.

12. Top-view (zy plane) geometry of a Givens rotation device.23

13. The diffracted electric fields of the Givens rotation device as a function of the applied

2



electrode voltage. The dotted lines correspond to rigorously calculated results while

the continuous lines correspond to a best cosine or sine fit. (a) 0-order forward-

diffracted fields, and (b) +1-order (Bragg) forward-diffracted fields.

14. (a) The top-view of the herringbone multiplier. (b) The wavevector diagram (zx plane

intersection) that corresponds to the herringbone multiplier. The incident wavevector,

k,, the Bragg diffracted wavevectors, 04 and 62, and the grating vectors, /i and/T 2

are shown.

15. The efficiency of the -2-order forward-diffracted mode, the predicted efficiency from

the approximate formula DEp, = K. V V2 , and the percentage error (DEp, - DE) x

100/DE, as functions of the applied voltages (V = VI = V2).

16. Diffraction efficiencies of the 0+, 0-, E+, and E- forward-diffracted waves as a

function of the applied voltage for (a) the 0-order, and (b) the Bragg-order.

17. Diffracted phases of the 0+, 0-, E+, and E- forward-diffracted waves as a function

of the applied voltage for (a) the O-order, and (b) the Bragg-order. -

18. Diffraction efficiencies of the 0-order forward-diffracted mode (dashed line), and of the

Bragg-order diffracted mode (continuous line) as a function of the applied voltage. In

these plots, the computed solutions are given by the solid dots. The continuous and

the dashed lines, calculated by cubic spline interpolation, have been provided for ease

of interpretation.

19. The theoretical (continuous line) and the experimental (circles) mode diffraction effi-

ciencies of the interdigitated-electrode correlator" as a function of the applied voltage.
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